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ABSTRACT

Wearable devices are becoming increasingly important in
our daily lives. Energy harvesting instead of battery is
a better power source for these wearable devices due to
many advantages. However, harvested energy is often un-
stable and program execution will be frequently interrupted.
Non-volatile processors demonstrate promising advantages
to back up volatile state before the system energy is de-
pleted. But Non-volatile processors require additional mem-
ory for backing up, thus introducing non-negligible overhead
in terms of energy, runtime as well as chip area. In this
work, we target at non-volatile register reduction for energy
harvesting based wearable devices. This paper proposes to
stack trimming the memory footprint via a novel compiler
directed method. The evaluation results deliver on average
28.6% reduction of non-volatile register files for backing up
stack area, with ultra low runtime overhead.
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D.3.4 [Programming Languages]: Processors—compil-
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1. INTRODUCTION
In recent years, we have witnessed exponential growth of

cyber-physical systems including wearable devices. Wear-
able technology refers to mobile electronic devices that are
worn on a user’s body or attached to their clothes. Wear-
able technology revolutionizes the quality of our daily lives,
and is believed to become a $1.6 trillion business in the
near-future [1]. In wearable devices such as health moni-
tors, batteries are no longer favored due to size limitations,
safety concerns, and recharging inconvenience. As an al-
ternative, energy harvesting is proposed to power wearable
cyber-physical devices.

Energy harvesting is a favorable power source since it
can harvest energy from solar, electromagnetic radiation, or
thermal sources to power electronics [13]. It provides better
user experiences than batteries in an environment-friendly
manner. However, energy harvesting power sources are in-
trinsically unstable [5]. Due to this instability, program ex-
ecution may be frequently interrupted. With CMOS-based
volatile processors, the intermediate results will be lost after
power outages and thus result in vain re-executions, which
imposes heavy energy overhead and even infeasibility to fin-
ish for large tasks. Non-volatile (NV) processors, in which
non-volatile memory is attached to the volatile logics to back
up program state information, have been developed recently
to address this issue [15, 16]. Each time that there is a power
outage, the processor’s state will be saved to the non-volatile
memory, which is known as checkpointing. Thus, the next
time that the power comes back on, the processor’s state is
reloaded and program execution resumes.

However, the attached non-volatile memory induces con-
siderable energy and runtime overheads, as well as occupies
a significant amount of chip area. The program state typi-
cally consists of the data stored in the volatile memory and
register files, where the memory content is commonly the
major concern. The memory content typically consists of
three separate parts: stack data, static data and heap data,
among which stack data often holds a major share. In this
work, we propose a compiler directed stack trimming strat-
egy in order to reduce the program state size, which in turn
reduces the required non-volatile memory size. We explore
the opportunity of overlapping the caller function’s frame



and callee function’s frames so that the corresponding ad-
dress space can be shared. To the best of our knowledge,
this is the first work to reduce NV register size via com-
pilation based stack trimming. The proposed technique is
orthogonal to hardware compression logics, therefore they
can work together for better efficiency. Specially, this paper
makes the following contributions:

• Propose a novel compiler directed stack trimming method
with negligible overhead;

• Propose to apply the afore-mentioned stack trimming
method to reduce the program state size for energy
harvesting based systems;

• Conduct a set of experiments to evaluate the efficacy
of the proposed strategy.

The remainder of this paper is organized as follows. Sec-
tion 2 summaries related work. Section 3 introduces prelimi-
naries and presents motivation examples. Section 4 presents
the stack trimming scheme. Section 5 presents evaluations
and Section 6 concludes this paper.

2. RELATED WORK
In this section, we will describe related work on energy

harvesting systems and non-volatile processors.
Energy harvesting sources including solar, wind, finger

motion and footfalls, are studied to be unstable [4, 2]. In
order to overcome the instability, NV processors have been
proposed for energy harvesting powered devices [15, 16].
Check-pointing has been shown to be an efficient method for
saving the runtime state [8]. In NV processors, before energy
runs out, the volatile execution states are checkpointed into
the non-volatile memory. After the system is recharged, the
execution states are copied back and thus the program can
be resumed efficiently. FRAM is preferred as the attached
non-volatile memory (NVM) due to its comparable access
efficiency to SRAM and the good endurance of 1014 write
cycles [16].

Considering the size limitation of wearable devices, the
necessary NVM size for checkpointing should be minimized.
To achieve this goal, data compression based hardware de-
signs are proposed to reduce the content to back up [12,
14]. These techniques are hardware-based and the efficacy
is highly dependent on compression ratios. In this work, we
tackle this problem from the compiler perspective by stack
trimming.

There are previous researches on stack size reduction. The
work in [9] employs global function inlining to reduce max-
imum stack memory requirements. Some work proposes to
reduce the stack size by keeping only one instance of a local
variable in recursive programs if it is guaranteed that this
local variable is at all recursive calls [10]. In this work, we
conduct stack trimming from a different angle by manipu-
lating frames of the caller and callee functions. The efficacy
of the proposed scheme is confirmed by evaluations.

3. PRELIMINARIES AND MOTIVATION
In this section, background informations are introduced

first, including the non-volatile processor, and the conven-
tional stack allocation scheme. Then a motivation example
is presented to illustrate how allocation schemes affect the
size of NV processors.

3.1 Non-volatile processor
Fig. 1 shows the structure of the state-of-the-art NV pro-

cessor, including on-chip non-volatile register files to back
up volatile logics of the system when energy is depleted.
Conventionally, all the volatile status, e.g. general purpose
register, user variables and stack, are copied to the NV reg-
ister file so that the program can resume after system is
recharged. Thus the necessary NV register file size is con-
servatively designed to be the same as, or even larger than
the volatile logic. Stack size dominates the internal volatile
logics (around 63% [15]) and thus this paper focuses on the
stack size reduction.

Figure 1: NV processor structure proposed in [15].

3.2 Live range
An object is alive at a program point if it may be ref-

erenced in future. All program points at which an object
is alive constitute its live range. Live variable analysis is
a common technique to compute the live range of each ob-
ject[3]. A key observation is that, the storage space assigned
to an object can be safely reused by another object, if these
two objects have disjoint live ranges. Based on this obser-
vation, a lot of space reusing schemes have been proposed
to reduce the required storage size, among which register
allocation is one of the most famous techniques.

3.3 Stack allocation
Program data are conventionally stored in three separate

areas: stack area, static area, and heap area, among which
stack area often contributes significantly for embedded sys-
tems. Each function instance is associated with a frame

(also called active record) to store the context information
for this function[3]. Local data, including local variables and
compilation temporary variables, are stored in this frame. A
conventional stack based allocator works as follows:

1. A specific memory address is assigned to the main

function’s frame.

2. Upon a function is called, the callee function’s frame
is allocated on top of the caller function’s frame.

3. Upon a function returns, the callee function’s frame is
deallocated from the top of caller function’s frame.

The composition of the allocated frames constitutes the stack
area. Traditionally, the stack space is separately allocated
for the caller and callee functions, which is too conserva-
tive and may results in a large total size. In this work, we
propose a novel stack allocation scheme for stack trimming
through address space sharing.



1 struct T

2 {

3 int _i;

4 int _j;

5 char _arr[10];

6 };

7 int copyT( struct T *t1, struct T *t2 )

8 {

9 int i;

10 int j;

11 modify(&i);

12 t1->_i = t2->_i + i;

13 modify(&j);

14 t1->_j = t2->_j + j;

15 strcpy(t1->_arr, t2->_arr);

16 return 0;

17 }

Figure 2: A example program. For simplicity, the
code of function modify and strcpy is not listed here.
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Figure 3: Live ranges for i, j, call site at line 11 (cs-
11), call site at line 13 (cs-13), call site at line 15
(cs-15).

3.4 Motivation example
Here a motivation example is presented to illustrate how

stack allocation schemes affect the stack size. The example
code is shown in Figure 2. The live range for each local ob-
ject of function copyT is shown in Figure 3. Note that here
each call site is also viewed as a local object, and its size is
equal to the callee function’s frame size. Figure 4 illustrates
the stack size under different stack allocation schemes. It
is shown that the conventional allocation scheme, without
any overlay in stack, holds the largest stack size, 20 bytes
(Figure 4(a)). Since i and j have disjoint live ranges, they
are overlaid in Figure 4(b). As a result, the frame size of
copyT is reduced by 4 bytes, and the maximum stack size is
in turn reduced to 16 bytes. Furthermore, in Figure 4(c), by
overlaying call sites with disjoint live ranges, the maximum
stack size can be reduced to 12 bytes.

From this example, we can conclude that objects with
disjoint live ranges can share the same address without vi-
olating the data integrity, such as callee cs-15 and caller
copyT. Objects with overlapped live ranges need to be as-
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Figure 4: Comparison of stack size under different
stack allocation schemes. Assume that the frame
size of copyT, modify and strcpy is 8, 4 and 12
bytes, respectively. (a) The conventional alloca-
tion scheme. (b) The allocation scheme with data
overlaying among data objects. (c) The allocation
scheme with data overlaying among data objects and
call sites.

signed with separate address like i and cs-11. In this work,
we will apply the address sharing principle for objects with
disjoint live ranges to achieve stack trimming.

4. COMPILER DIRECTED STACK TRIM-

MING
In this section, the compiler directed stack trimming tech-

nique is proposed. The challenges of the propose scheme lies
in that the stack space should be shared as much as possible
by objects, with the guarantee of data integrities as well as
the function sequence in stack. Here, objects include vari-
ables which are not assigned to registers and all call sites. To
achieve this goal, two steps are proposed as outlined below,
which will be discussed in detail later.

1. Function call graph construction. The function
call graph (FCG) is constructed to determine the order
by which functions are processed.

2. Data allocation based on FCG. The local objects
and call sites are allocated per function. With the help
of FCG construction, the callee function is guaranteed
to be processed before the caller function.

4.1 Function call graph construction
For a program, its function call graph (FCG) is a directed

graph FCG=<V,E>, where V is the set of vertices and E

is the set of edges. Each vertex represents a function. If a
function f calls g, there is a directed edge from g to f.

If there is no recursive function calling in a program, its
FCG is a directed acyclic graph (DAG). Then, a topological
sorting can be conducted, where each element is a function,
and a callee function always precedes the caller function.

If there are recursive function callings in this program, its
FCG has cycles. This FCG needs to be transformed into
a DAG by coalescing each cycle into one vertex. Then, a
topological sorting can be conducted, where each element
is either a function or a set of functions in the same cycle.



Algorithm 4.1 Data allocation based on FCG.

Input:

DAG: FCG of the program with topological sorting;
allocMap: an empty set of tuples (f,v,n), where f is a function,
v is a local object or call site of f, and n is the offset address
assigned to v.

Output:

allocMap: the updated allocMap.
1: for each function f of in the FCG do

2: if f is external, library or recursive function then

3: skip;
4: else

5: conduct live variable analysis for f ;
6: StackColoring(f, allocMap);
7: end if
8: end for

Each cycle is considered as one element, it always precedes
its caller functions in the topological sorting.

4.2 Data allocation based on FCG
This step allocates local objects, as well as call sites, for

each function. As illustrated in Algorithm 4.1, the stack
allocation is conducted for each function in the order defined
by the topological sorting of FCG. For each function, the
live variable analysis is conducted first to determine whether
a local object or call site can be placed overlapped with
another; then data allocation is conducted to assign an offset
address to each local object or call site. Note that external
or library functions should be ignored, since their source
code is unavailable.

Live variable analysis. Note that the traditional live
variable analysis does not cover call sites. Therefore, a mod-
ification is needed here to compute the live range of each call
site. In fact, the live range of the call site only includes the
call instructions constituting this call site.

After the live analysis, a live range interference graph
(LRIG) can be constructed. An LRIG=<V,E> is an undi-
rected graph, where V is the set of vertices and E is the set
of edges. Each vertex represents a local object. If an object
has overlapped live range with another, there is an edge be-
tween these two objects. Live range analysis is conducted
for each function to determine the live range of local objects
and call sites.

Stack Coloring. With the LRIG constructed by live
variable analysis, the data allocation problem can be viewed
as a graph coloring problem: to find a coloring scheme to
color the LRIG with the minimum number of colors under
the constraint that, the neighbour vertices cannot be colored
with the same color. Therefore, a heuristic graph coloring
algorithm as illustrated in Algorithm 4.2 is proposed for data
allocation. It always selects an object or call site with the
largest size to allocate (line 7∼12). Note that, the object
size can be determined at compilation time. Also, the call
site size, which is the size of its callee function, can always
be determined since the data allocation is conducted in the
order of callee functions before caller functions. For each
selected object, it always tries to assign a possibly lowest
numbered color to it (line 16∼30). After stack coloring, it
finalizes the data allocation by associating each color with an
offset (line 36∼45). A special case is when the callee function
is external, library or recursive, the call site size is set to be
zero. Since it has the smallest size, this algorithm assigns the
highest numbered color to it and then sets its offset with the

Algorithm 4.2 Stack coloring algorithm.

Input:

f: the function to be processed;
frameSizeMap: recording the frame size for each function.

Output:

allocMap: the updated frameSizeMap.
1: // Step I: stack coloring
2: // colorMap is used to record the set of locals and call sites

assigned for each color
3: initialize colorMap to be empty;
4: totalColors ← 0;
5: while LRIG is not empty do

6: // select the object of largest size, then of highest degree
7: find the set of vertices with the largest size from f ’s LRIG;
8: if this set is not a singleton then
9: curObj ← a vertex with the highest degree from this set;
10: else

11: curObj ← the unique vertex in this set;
12: end if
13: // assign the possibly lowest numbered color to the selected

object
14: color ← 0;
15: success ← false;
16: while color <totalColors && !success do

17: objs ← colorMap[color ];
18: if any obj in objs interferes with curObj then
19: skip;
20: else

21: objs.add(curObj );
22: success ← true;
23: end if

24: color ← color + 1;
25: end while
26: // need to assign a new color
27: if !success then

28: colorMap[totalColors].add(curObj );
29: totalColors ← totalColors + 1;
30: end if

31: update LRIG by removing curObj ;
32: end while
33: // Step II: data allocation according to stack coloring
34: color ← 0;
35: nextOffset ← 0;
36: while color <totalColors && !success do
37: offset ← nextOffset ;
38: for each obj of colorMap[color] do
39: obj.offset ← offset ;
40: if offset + obj.size > nextOffset then

41: nextOffset ← offset + obj.size;
42: end if

43: end for
44: color ← color + 1;
45: end while

caller function’s frame size. As discussed later, it conforms
to the conventional stack allocation scheme.

4.3 Implementation analysis
In conventional stack allocation, the callee function’s frame

is allocated on top of the caller’s frame. This is implemented
by inserting an instruction such as “SUB ESP, n” at the
caller function’s entry (before all call sites), where ESP is
the stack pointer register and n is the caller function’s frame
size. And, an instruction such as “ADD ESP, n” is inserted
at the caller function’s exit to restore the stack pointer. Es-
sentially, it implicitly assigns an offset equal to the caller
function’s frame size to all call sites.

The technique proposed in this paper makes a change that
it assigns different offsets to different call sites. It can be
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Figure 5: Experimental setup.

implemented by inserting“SUB ESP, m”before each call site
individually where m is the offset assigned to this call site.
And, after each all site, “ADD ESP, m” is inserted to restore
the stack pointer. The overhead comes from the inserted
stack pointer modification instructions, which is linear to
the number of call sites.

For the special cases when the callee function is external,
library or recursive, as stated in Section 4.2, its offset equates
the caller function’s frame size, which conforms to the con-
ventional stack allocation. Therefore, there is completely no
compatibility problem with legacy code.

5. EXPERMENTS
In this section, the experimental setup is introduced first,

and then the experimental results are presented.

5.1 Experimental setup
To evaluate the proposed stack trimming method, we use

the experimental setup as illustrated in Figure 5. The stack
trimming method is implemented based on LLVM compiler
infrastructure[6]. It works after the register allocation pass,
since the stack allocation should collect and allocate the vari-
ables spilled out by the register allocation pass. We run the
generated code with the PIN tool[7] to collect the stack size
statistics. The benchmarks are from the powerstone suite
[11].

In the experiments, three methods are evaluated. The
baseline method applies the conventional stack allocation
scheme. The data overlay method reduces the frame size
of a function via assigning the same address to objects with
disjoint live ranges. The aggressive overlay method is similar
to data overlay, except that it reduces the total stack size by
sharing the same address among the callee function’s frames
and the caller function’s local objects.

5.2 Comparison of maximum stack size
The requirements of stack size are critical for energy har-

vesting NV processors. This is because with a smaller stack
size, less program states are needed to back up before power
failure, and thus the size of NV memory can be reduced.
Also, the reserved energy budget for back up can also be
reduced. As Figure 6 shows, for all benchmarks, the aggres-
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Figure 7: The first 50 changes of stack size (Byte).

sive overlay method reduces more stack size than the data

overlay method, and the data overlay method reduces the
stack size compared to the baseline method. Compared to
the data overlay method, although the aggressive overlay

method cannot improve the frame size reduction, it reduces
the total stack size by overlaying adjacent function frames.
On average, the data overlay and aggressive overlay methods
can reduce the stack size by 17.7% and 28.6% respectively,
compared the baseline method.

5.3 Changes of stack size at call sites
During a program’s run time, its stack size only changes

at call sites. When the call site invokes the callee func-
tion, the callee function’s frame is allocated on stack and
the stack size increases. When the callee function returns
to the call site, its frame is deallocated and the stack size
decreases. Figure 7 shows the first 50 changes of stack size
for several benchmarks. For adpcm, the aggressive overlay

method is constantly better than the data overlay method,
and the data overlay method is constantly better than the
baseline method. Therefore, whenever the energy outage oc-
curs, with the proposed stack trimming method, a smaller
number of back up registers are needed. This phenomenon
holds true for most of the benchmarks, and during most of
a program’s run time. But there are several exceptions.

As illustrated in Figure 7(b), for fir, the data overlay

method cannot reduce the stack size, while the aggressive

overlay method can significantly reduce the stack size, com-
pared to baseline. This is because, the live ranges of local
variables interfere with each other, while some of them are
disjoint from live ranges of the call sites.



Benchmark(#) adpcm bcnt blit compress crc engine fir jpeg pocsag qurt ucbqsort

# of call sites 43 10 12 27 3 15 20 12 34 14 15
# of instructions 1572 700 815 1608 184 839 785 597 1152 742 991
dyn. calling count 753 2 4 938 259 5229 346 31229 515 26 9142
dyn. instr. count 92360 56375 3476 222580 61937 651897 23601 7203505 93512 1853 335098

Table 1: Benchmark characteristics.

Reversely, for blit, pocsag and qurt, the aggressive overlay

method cannot reduce the stack size more than the data

overlay method, as illustrated in Figure 7(c). For these
benchmarks, the live ranges of call sites always interfere with
the live ranges of local objects.

Another exception is jpeg. As illustrated in Figure 7(d),
the first function, main, has a larger frame size in aggres-

sive overlay method than in the data overlay method. This
is because that, during data overlaying process, the former
method considers not only local variables, but also the callee
functions’ frames. In order to make the most of data over-
laying, the local variables may be allocated with a larger
space. However, this phenomenon occurs only close to the
entry or exit of a program. This is because, when multiple
function frames are allocated on stack, the former method
can reduce the stack size by overlaying the adjacent frames.

5.4 Overhead analysis
The overhead of the proposed stack trimming method can

be analyzed from two aspects: code size and run time over-
head. As stated in Section 4.3, the implementation needs
to insert ESP modification instructions before (after) the
concerned call site for frame allocation (deallocation). The
number of such instructions is no more than twice of the
number of call sites. As shown in Table 1, compared to the
total number of instructions, this code overhead is negligi-
ble. On the other hand, the run time overhead is determined
by the execution count of the inserted instructions, which is
no more than twice of the dynamic function callings. As
shown in Table 1, compared to the total execution count of
instructions, this run time overhead is also negligible.

6. CONCLUSION
Energy harvesting is a favourite power source for wearing

devices. To overcome the unstable of energy harvesting,
non-volatile memory based back up processors have been
proposed to back up the program state before power failure.
It is critical to reduce the size of program state information
for frequent back up. This paper proposes a novel compiler
directed stack trimming strategy to reduce the stack size.
The experimental results shown that the proposed method
can effectively reduce the stack size with negligible overhead.
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