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Abstract—Phase change memory (PCM) has been considered
as a replacement of DRAM, due to its potentials in high storage
density and low leakage power. However, the limited write
endurance presents critical challenges. Various wear leveling
techniques have been proposed to mitigate this issue from
different perspectives, including both hardware and software
levels. This paper proposes a wear leveling aware memory
allocator, which (1) always prefers allocating memory blocks
with less writes upon memory requests, and (2) leaves blocks
allocated more than a threshold value unallocable temporarily.
Furthermore, for the first time, this allocator provides a uniform
management scheme for both stack and heap areas, thus could
better balance writes in stack and heap areas. Experimental
evaluations show that, compared to state-of-the-art memory
allocators (i.e., glibc malloc, NVMalloc and Walloc), the proposed
memory allocator improves the PCM wear leveling, in terms of
CoV (a wear leveling indicator) by 41.9%, 30.3%, and 35.8%,
respectively.

Index Terms—PCM, wear leveling, memory allocator, stack
and heap

I. INTRODUCTION

Dynamic Random-Access Memory (DRAM) has achieved
dramatic density improvement along with the advancements
of memory technology scaling over the past few decades.
However, continued scaling will be in jeopardy and scaling
DRAM beyond 22nm seems impossible [1], which restrict
the amount of memory available to a system. Moreover, in
order to prevent the data loss caused by the leakage of electric
charge on capacitors, DRAM consumes significant energy to
continuously refresh power, contributing to as much as 20-40%
of total system energy [2].

Fortunately, the emerging Phase Change Memory (PCM),
one of non-volatile memory (NVM) technologies, has demon-
strated great potentials to be an alternative to DRAM due to
their high integration density, low leakage power and byte
addressability [3] [4] . However, the limited write endurance
of PCM presents challenges for integrating it in the memory
hierarchy. PCM cells will be destroyed permanently after
enduring 108 writes, causing their average lifetime less than
three years. Furthermore, the write-intensive operations will
accelerate the wear of PCM and shorten the achievable lifetime
to even several days [5].

To alleviate the endurance problem and extend lifetime of
PCM, lots of wear leveling techniques based on operating

system (OS) technology and compilation technology were
proposed, striving to evenly distribute write operations among
the entire PCM space. Specifically, majority of OS level
techniques focus on achieving page level wear leveling by
swapping hot and cold pages [6] [7]. The compilation level
techniques, on the other hand, are mainly engaged in reducing
uneven wear caused by data writing patterns, and achieve
program memory level wear leveling by optimizing the data
allocation scheme [8] [9], which are somehow orthogonal to
OS level techniques. In this study, we focus on the latter.

It is observed that the mechanism of stack and heap al-
location is one of the major causes of uneven data writes
during program’s runtime. Some existing work proposed wear
leveling aware stack allocation or heap allocation respectively
[9] [10] [5]. However, these methods either consider stack
or heap areas, but never both. We conducted a series of
experimental evaluations of the usage of PCM cells, and
observed that there is a serious imbalance between the wear of
stack and heap as well. Based on this observation, this paper
proposes to employ a wear leveling aware memory allocator
for both stack and heap management. The major contributions
of this paper are highlighted as below:

• To the best of our knowledge this paper presents the first
method that uniformly managing the stack and heap area
to achieve wear leveling inside and between stack and
heap areas.

• A wear leveling aware memory allocator based on wear
count per basic block is proposed to achieve write balance
over the memory space.

The rest of paper is organized as follows. Section II dis-
cusses the background and motivation. Section III introduces
the uniform management for stack and heap. Section IV de-
scribes the implementation of our wear leveling aware memory
allocator. Section V presents the experimental evaluation. The
related work is discussed in Section VI. Finally, Section VII
concludes this paper.

II. BACKGROUND AND MOTIVATION

A. PCM-based main memory system

a) Phase Change Memory (PCM): PCM is a type of
non-volatile random-access memory that utilizes the large



resistivity contrast between crystalline and amorphous phases
of chalcogenide (the phase-change material) to store bits,
where the crystalline state (low resistivity) corresponds to 1
and the amorphous state (high resistivity) corresponds to 0.
Phase changes are induced by injecting current and heating
the memory cell, which determines the energy consumption of
writes operations. Besides, the transformation from amorphous
to crystalline takes a little longer time, which determines the
write latency. Table I presents the parameters of PCM and
DRAM [10] [5].

b) A PCM Main Memory Architecture: Based on the
characteristics described above, we observe that PCM and
DRAM each have their respective pros and cons. If substituting
PCM for DRAM as main memory directly, the system perfor-
mance will be decreased significantly because of the relatively
higher latency and worse endurance of PCM compared to
DRAM. Instead, a PCM main memory architecture usually
comprises a small DRAM, harnessing the best properties of
each. In this study, we assume that the operating system (OS)
will manage the PCM in a manner similar to current DRAM
systems. PCM will be organized at 4 KB page granularity,
and processes can request PCM pages from OS by system
call mmap(). DRAM will be utilized to absorb some frequent
writes, which requires the virtual memory mechanism to be
able to map both PCM and DRAM into process address
space. Lastly, in order to take the advantage of PCM’s non-
volatile characteristic and restore persistent application state,
OS must maintain the non-volatile memory pages for each
process across machine reboots.

B. Uneven wear inside and between stack and heap

a) Uneven Wear inside Stack: The stack is utilized to
manage the procedure calls and functions’ execution context
in program’s runtime environment. Each function instance has
its own unique associated memory on the process’s stack,
which is called stack frame or active record, to hold in-
coming parameters, local variables and temporary variables.
The conventional stack based memory allocator works in last-
in-first-out (LIFO) method, and the function’s frame alloca-
tion/deallocation is always conducted on the top of stack.
Therefore, some memory regions may be allocated to a large
amount of frames, while some others are rarely used.

Reference [9] quantified the uneven wear problem of stack
by conducting a set of experimental evaluations of the writing
patterns on stack, and proposed a Wear Leveling aware Dy-
namic Stack (WLDS) technique to mitigate this problem. This
method employs a dynamic stack allocator for the management
of stack. The allocator works in a way analogous to the heap
based memory allocator, which manages a free block list and
allocates a free block from the list following a next-fit policy.

TABLE I: Characteristics of PCM and DRAM

Read Write Endurance Write power
DRAM 30ns 15ns > 1016 0.1nJ/b
PCM 20–50ns 60–120ns 108 < 0.1nJ/b

However, they don’t deal with the write imbalance in heap
area, and the next-fit policy based technique is suboptimal.

b) Uneven Wear inside Heap: Distinct from stack, heap
is more explicitly managed and free-floating. Considering
glibc malloc, one of the most universal heap based memory
allocator at present, it caches and reallocates small memory
blocks in last-in-first-out way, which may concentrate writes in
a few memory areas. Additionally, malloc maintains metadata
in the header and footer of each used/free memory block,
containing the size of block and the pointers to the previous
and next block. Metadata is updated whenever the block is
merged or splitted, leading to a slew of small writes.

In order to reduce the uneven usage of heap memory, Ref-
erence [10] [5] respectively proposed a wear aware memory
allocator as the substitute for the traditional allocator, namely
NVMalloc and Walloc. Both of them leverage segregated free
lists for the management of different size free blocks, and
divert the frequently changing metadata (e.g. free lists) to
DRAM. Furthermore, NVMalloc restricts on memory blocks
so as to not be allocated more than once during the time
interval T. To this end, the newly freed memory will be times-
tamped and inserted into a FIFO queue (the don’t-allocate list).
Walloc follows the Less-Allocated-First-Out (LAFO) policy
and always allocates a free memory block with fewer writes.
To avoid some free memory lists become hot under skew-
size workloads, Walloc sets a global threshold to limit the
free block lists’ allocation frequency. Those free block lists,
whose average wear count is beyond this threshold, will be
unavailable for reallocation. However, these methods may fail
in some applications, which we identify in section IV-D.
Moreover, they do not deal with the imbalance in stack area.

c) Uneven Wear between Stack and Heap: Convention-
ally, stack and heap areas are managed separately and grow
in opposite directions. This convention contributes to the
different writes density between these two areas. As shown in
Fig. 1, the data writing patterns between stack and heap may
differ by orders of magnitude, where the maximum number
of writes reaches almost 175 thousand in stack but less than
400 in heap.

Moreover, there is commonly a big gap between stack and
heap areas to avoid early stack overflow or heap overflow.
This gap, mostly untouched throughout a process’s lifetime,
significantly exacerbates the uneven wearing among the whole
address space. As far as we know, none of existing compilation
based techniques has been proposed to address this issue. For
the first time, this paper presents a wear leveling memory
allocator to manage both areas uniformly.

III. UNIFORM MANAGEMENT FOR STACK AND
HEAP

The conventional stack and heap memory allocators are
designed with the purpose of higher allocation speed and more
efficient space utilization, which is somehow in conflict with
wear leveling in current situation. These allocation mecha-
nisms make sense for DRAM, but they will have unintended
effect when applied to PCM. To tackle this problem, we
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Fig. 1: Stack and heap memory usage of basicmath (a). the
number of writes as well as function frames over stack area.
(b). the number of writes as well as malloc requests over heap
area.

propose to employ a wear leveling aware allocator to allocate
and manage memory for stack and heap uniformly, thus to
achieve an even usage both inside and between stack and heap.

Applying a custom allocator for heap allocation is a fairly
straightforward affair, since the built-in malloc implementation
can be simply replaced for both dynamically linked and static
linked programs. However, applying a custom allocator for
stack allocation is relatively troublesome, as the traditional
stack allocation is automatically completed, through adjusting
of the stack pointer register. To address this issue, we adopt
the dynamic stack proposed in [9], as stated below:

• Suppose that a caller function f is about to invoke a callee
function g. Immediately before the invocation, the malloc
function is employed to obtain an appropriate memory
area for g’s frame.

• An extra entry, control link(CL) is added into g’s frame
to store the frame address (the highest memory address)
of caller function f.

• The register ebp’s content is updated with g’s frame
address, meanwhile, the local variables can be accessed
through the negative offset to the frame address as usual.

• Then, function g executes afterwards.
• Lastly, upon function g returns, the ebp’s content is

updated with CL value, pointing back to f ’s frame. And
the free function is employed to release memory block
used by g.

Under this circumstance, each function’s frame can be
regarded as an object, similarly to the object on the heap.
Every time a function is invoked/finished, its frame object is
allocated/released. Hence, the frame objects and heap objects
are in a position to share an identical wear leveling aware
allocator, and we can achieve a unified management of stack
and heap, making no distinction between their memory space.
As a result, the problem of uneven wear between stack and
heap is considered as a whole, and it’s no longer necessary to
reserve a big gap of between stack and heap.

IV. WEAR LEVELING AWARE MEMORY
ALLOCATOR

Traditional dynamic memory allocators (e.g. glibc alloca-
tor) couple the frequently changing metadata and data for
easy used/free memory space management, and cache newly
freed small memory blocks for preferential allocation. Thus
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Fig. 2: Structure of UWLalloc

heavily skew memory writes will arise when using these
allocators. To address this issue, we proposed UWLalloc, a
new Wear Leveling aware allocator for Uniform stack and heap
management in PCM based main memory system. UWLalloc
is based on the two ideas: (1) prefer allocating memory blocks
with less writes upon memory requests, and (2) leave blocks
allocated more than a threshold value unallocable temporarily.

A. Structure of UWLalloc

The structure of UWLalloc is similar to that of NVMalloc,
shown in Fig. 2. Firstly, the segregated free list approach is
adopted which maintains a set of linked lists, where each
list holds free blocks of a particular size. Notice that the
memory space allocated in UWLalloc is 64 bytes aligned,
thus every memory block allocated is composed of basic
memory blocks (64 bytes) and the size for every free list
is a multiple of 64 bytes. Traditional allocators store the list
pointers inside the headers and footers of freed blocks. Those
in-place pointers are updated when coalescing contiguous free
blocks or splitting large free block, resulting in a mass of small
writes. To prevent PCM from these frequent small writes,
UWLalloc relegates the list pointers to DRAM and links all
the list nodes to their associated PCM memory area.

Secondly, a state list stored in DRAM is utilized to help
track the allocated/free state and the wear count (WC) of each
basic memory block. WC indicates the allocation frequency of
memory block and determines the allocation order. Note that
data in DRAM is volatile, and will be lost across reboots. To
persist the allocation state, a header with its size and allocation
state is coupled to each allocated/free memory area. When
mapping a new PCM region, the volatile data can be rebuilt
[10] except wear count. To restore wear count information,
UWLalloc, like Walloc, checkpoints it to PCM at intervals.

B. Allocation algorithm

UWLalloc preferentially allocates memory blocks with the
least allocation frequency for the purpose of wear leveling.
Specifically, the memory blocks in free lists are ordered
by worst wear count (the maximal wear count among the
constituent basic memory blocks), therefore, we only need to
consider the head block when picking one out from a free list.
The steps of allocation are as follows:



• Upon a memory request, UWLalloc calculates the number
of basic memory blocks needed for allocating, then
selects the free list with the best fit size and returns the
first memory block.

• If the corresponding list is empty, the lists with larger
sizes will be searched, and a larger free block will be
split.

• If none is found in all lists, a new memory area will be
allocated from the free zone of requested memory, where
the memory has never been allocated yet.

• On condition that the free zone memory space is insuf-
ficient and allocation still fails, more PCM pages will
be requested from the operating system. In addition, the
maximal memory space can be configured, and when
memory usage approaches this ceiling, the wear limit will
increased to recover those unallocable blocks

• At last, each allocated basic block’s WC is increased by
1 and state is shifted from free to allocated.

C. Free algorithm

The simple less-allocated-first-out policy cannot satisfy our
expectations for wear leveling. Memory requests sizes are non-
uniform distributed in the actual situation, which leads to a
few free memory lists become hot lists. A few memory areas
will still be worn out prematurely. To deal with this matter,
UWLalloc limits the allocation times of each basic memory
block. Each time a memory area is released, UWLalloc
checks the wear count of each basic block. Blocks that reach
to the wear limit will get isolated and become unallocable
temporarily (see red block in Fig. 2). The remaining blocks
are then merged with adjacent free and allocable blocks by
checking the state list.

D. Major difference against existing wear leveling ware allo-
cators

In literature, there are two wear leveling aware alloca-
tors, i.e., NVMalloc and Walloc. NVMalloc stipulates that a
memory block should not be allocated twice within a time
interval T, and its performance is highly sensitive to this
parameter. Considering that the time patterns for different
applications vary greatly from each other, it is difficult to
determine an appropriate T in specific situations, as confirmed
by experimental evaluation.

On the other hand, Walloc follows the less-allocated-first-
out policy, and restricts the use of free lists whose average
wear count exceeds a global threshold to keep them from
being hot. However, some restricted blocks may become
allocable accidentally when merged with the adjacent free
blocks, resulting in an uneven wear inside some large size
blocks, as confirmed by experimental evaluation.

Compared with NVMalloc, UWLalloc utilizes wear count
instead of time interval to guide the memory allocation,
which could achieve more stable wear leveling performance
in various programs. And compared with Walloc, UWLalloc
places a limit for each basic memory block, thus could provide
more fine-grained wear leveling.

V. EXPERIMENT

A. Experiment setup

Two experiments are conducted to evaluate the wear leveling
performance of our approach.

First, a random allocation test adopted in [10] [5] is utilized
to help compare the wear leveling ability between glibc
malloc, NVMalloc, Walloc and UWLalloc, which comprises
100K random memory allocation and deallocation operations
(50% each). The allocation sizes are uniformly distributed
between 10B and 1KB. And for each allocation, the entire
allocated block is written once. The timestamp of NVMalloc
is set to 10 microseconds while the global threshold for Walloc
and wear limit for UWLalloc are both set to 100.

Next, applications of the above four allocators for the
unified stack and heap managements are evaluated in term
of wear leveling performance. Programs from Mibench [11]
are used for the evaluation. A pin [12] based tool is developed
to trace these programs’ procedure calls, malloc requests and
write operations. The uniform management process is then
further simulated, where functions’ frames are regarded as
objects requesting for memory, like malloc requests; new
memory space will be allocated and original write operations
will be relocated. More allocations and deallocations will
perform in this experiment, therefore we raise the timestamp
of NVMalloc to 100 microseconds, the global threshold of
Walloc and wear limit of UWLalloc to 200.

All experimental evaluations are performed on a linux
virtual machine (kernel version 4.15.0, glibc version 2.23) with
an Intel Core i5-7500 3.40 GHz CPU and 8 GB of DRAM
memory. Since the PCM is not integrated along the DRAM in
current commercial products yet, we use DRAM as a proxy.

B. Evaluation methodology

The target of wear leveling is to reduce the write variations
and achieve an even usage of memory space. To quantify the
variation, the coefficient of variation (CoV) is used as the
evaluation metric, which is borrowed from [13], defined as
follows:

CoV =
1

waver
·

√∑N
i (wi − waver)2

N − 1
(1)

where wi is the write count of the basic memory block (64
bytes) located at position i, waver is the average write count,
and N is the total number of basic memory blocks.

Based on the definition, a smaller CoV indicates the better
wear leveling or a more even usage among memory cells. The
value of CoV will be equal to zero when all the memory blocks
are same in the write count.

C. Experimental result

a) Random allocation test: Fig. 3 shows the memory
write patterns under random allocation of uniform distributed
data size. From Fig. 3(a), we can see that NVMalloc, Walloc
and UWLalloc write more evenly than glibc malloc, since
malloc concentrates all the writes in a few memory areas. Fig.
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Fig. 3: Writes per block (64 bytes) under random allocation
test

3(b) is a close-up for NVMalloc, Walloc and UWLalloc. Obvi-
ously, UWLalloc achieves the most uniform write distribution
as the majority of memory blocks reaching or approaching
the wear limit. Although the same adopting less allocated
first out policy, Walloc ignores the uneven wear inside large
memory blocks caused by accidentally reactivate restricted
blocks, which leads to the squiggly memory usage. The CoVs
for malloc, NVMalloc, Walloc and UWLalloc are 1.107, 0.217,
0.333 and 0.167 respectively, thus UWLalloc achieves a better
wear leveling performance in this test case.

b) Uniform management for stack and heap: Fig. 4
shows the CoVs for each benchmark under the uniform stack
and heap management with different allocators. Normalization
is carried out in every benchmark. And the last column
presents the average CoV for each allocator. The results show
that, UWLalloc can obtain the smallest write variation in most
cases, thus indicates a more even memory usage. Compared
against glibc malloc, NVMalloc, and Walloc, UWLalloc can
improve wear leveling by 41.9% (0.351 / 0.837), 30.3% (0.211
/ 0.697) and 35.8% (0.271 / 0.757) on average.

It is found that glibc malloc performs the worst statistically,
but it doesn’t lag behind consistently. A typically example is
dijkstra, where glibc malloc achieves the smallest CoV.

During the allocation, a wear leveling aware allocator at-
tempts to allocates a memory block allocated less frequently,
assuming that each block’s write frequency is positively related
to the allocation frequency. This assumption doesn’t hold for
dijkstra. Fig. 5 shows the allocation times of every 64 bytes
block for different allocators in dijkstra. The distribution is
seriously imbalanced in glibc malloc, while the others are
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Fig. 4: CoVs under unified stack and heap management with
different allocators

much more even. However, the non-uniformity of writes within
the allocated memory blocks still cause an uneven usage. As
shown in Fig. 6, some hot data within a function frame or a
memory block imposes an intensive usage of a small fraction
of memory cells, leading to the increment of CoV. Mitigating
this kind of uneven writes requires wear leveling at a finer
granularity than inter function frames or heap objects, which
will be considered in future research.

Fig. 7 presents the memory usage under the uniform man-
agement for stack and heap. Malloc always leads to the
least memory usage since it doesn’t take wear leveling into
consideration. Compared to NVMalloc and Walloc, UWLalloc
allocates less memory space and at the same time achieves a
better wear leveling performance.

VI. RELATED WORK

In the past few years, researchers proposed lots of wear
leveling techniques to prolong the lifetime of PCM, from the
perspective of hardware and software.

At hardware level, some hybrid main memory system ar-
chitectures, consisting of DRAM and PCM, are designed in
order to relegate most of write traffic from PCM to DRAM
[14]. Row shifting, segment swapping [15], address remapping
[16] and some other techniques are proposed to distribute
write operations evenly among PCM cells. Although hardware

(a) glibc malloc (b) NVMalloc

(c) Walloc (d) UWLalloc

Fig. 5: Allocation times per 64 B block for dijkstra



(a) glibc malloc (b) NVMalloc

(c) Walloc (d) UWLalloc

Fig. 6: Writes per 64 B block for dijkstra
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Fig. 7: Memory usage under unified stack and heap manage-
ment with different allocators

wear leveling is necessary, it does not provide a complete
solution. Some approaches shift data to new locations, which
can impose overheads and reduce performance. Moreover,
hardware techniques cannot well identify hot and cold data
in programs, thus influencing the wear leveling performance.

On the other hand, software wear leveling complements
hardware wear leveling for PCM [6] [7]. Some data allocation
methods are proposed to help distribute memory writes evenly.
Reference [9] proposed a Wear Leveling aware Dynamic Stack
(WLDS) technique, which circularly allocates memory space
to stack frames by next fit policy and mitigates the uneven
wear in stack. Reference [10] [5] respectively proposed a wear
aware memory allocator as the substitute for the conventional
allocator, namely NVMalloc and Walloc, achieving an even
usage of memory space in heap. However, these methods either
consider stack or heap areas, but never both. And experiments
show that, the uneven wear between stack and heap remains
a pending problem.

VII. CONCLUSION

This paper proposes a new wear leveling aware allocator,
and for the first time, this allocator provides a uniform manage-
ment scheme for both stack and heap areas, thus could better
balance writes in stack and heap areas. Experimental evalu-
ations show that our allocator achieves a better performance

than the state-of-the-art wear leveling aware allocators, and the
uniform management of stack and heap obtains a significant
reduction in write variation.
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