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Abstract—Non-Volatile Memory (NVM) technologies, such as
Phase Change Memory (PCM), herald the next generation of
main memory as they offer superior features compared with
DRAM. Unfortunately, NVM’s limited write endurance hinders
its adoption as its lifetime can be extremely short under skew
writes. This paper observes that the loops in programs are one
of the primary causes of uneven writes as they introduce the hot
data and cause a large number of stack frames to be allocated
to the same locations. To alleviate this problem, we present
Loop2Recursion, a compile-time wear leveling technique for
transforming loops into recursions automatically. Qur approach
is flexible as it can avoid a substantial memory overhead by
limiting the depth of recursion. Experimental results demonstrate
that Loop2Recursion can significantly improve the wear leveling
over stack area compared to the state-of-the-art methods, while
incurring only negligible performance overhead.

Index Terms—NVM, wear leveling, loop2recursion

I. INTRODUCTION

Emerging Non-Volatile Memory (NVM) technologies, such
as Phase Change Memory (PCM) [1], feature high density, low
standby power, storage-like persistence, byte addressability
and DRAM comparable performance [2]. These characteristics
make NVM a competitive candidate for the next generation
of main memory. However, NVM suffers from limited write
endurance. An NVM cell will wear out after a certain number
of writes. For example, each PCM cell is only expected to en-
dure 107 — 10? writes [3]. In the absence of wear management,
NVM'’s lifetime can be as low as 1.1 months [4]. To address
the endurance issue and prolong NVM'’s lifetime, system
designers and software developers must manage wear carefully
and prevent intensive writes wearing a small proportion of
NVM cells out prematurely.

In the past decade, many wear leveling techniques that
spread writes uniformly over the entire NVM space have
been proposed at various levels, e.g., at the hardware level,
Operating System (OS) level and program level. Each level
is somehow orthogonal to and capable of working in tan-
dem with one another. Specifically, hardware wear leveling
is achieved by shifting or swapping data between physical
locations at different granularities (e.g. memory line [3] or
page [5]). Finer granularities provide better wear leveling
while incurring higher storage and performance overhead.

In contrast, OS-level techniques focus on page-level wear
leveling by employing wear-aware page allocation, replace-
ment and swapping schemes [4], [6]. However, most OS-
level techniques neglect the wear imbalance inside a page and
involve additional hardware to track page wear. Program-level
techniques aim at distributing writes uniformly in program’s
runtime memory by optimizing data allocation and access
patterns [7]-[9]. These techniques avoid the need for hardware
and OS support and therefore provide a low-cost and effective
wear leveling solution, although they are somewhat limited
due to the requirement on the availability of the source code.
Program-level wear leveling can be especially important when
NVM technologies are applied to embedded systems without a
Memory Management Unit (MMU) or caches, such as Cortex-
M3/M4 [10] processor-based systems, as hardware level and
OS-level wear leveling techniques would become substantially
more inefficient and impractical in such cases.

Existing program-level techniques are mainly concerned
with wear leveling for the heap and stack segments of a
program. For stack wear leveling, a dynamic stack was put
forward to allocate stack frames dynamically like allocating
heap objects [8], [9]. However, this technique suffer from two
limitations. First, when some variables are frequently updated
within a stack frame (referred to as “hot” data), a large number
of writes will still converge to a few fixed locations. Second,
allocating stack frames with a dynamic allocator imposes
significant performance overhead.

To address these two issues, this paper focuses on optimiz-
ing the loops in programs for stack wear leveling, as loops
are often the most computation intensive part of applications.
We observe that (1) a loop usually changes a few variables
iteratively, inducing the hot data and uneven wear inside stack
frames, and (2) a loop may contain some function calls,
causing a large number of stack frames to be allocated on
the same memory location and thus exacerbating the wearing
of specific stack addresses. Based on these two observations,
we propose Loop2Recursion, a compile-time wear leveling
technique for NVM. Loop2Recursion eliminates hot data
inside stack frames and mitigates the imbalance of stack
frame distribution by automatically transforming loops into
recursive functions. Furthermore, considering that completely



transforming loops into recursions may increase the stack
memory footprint significantly and even lead to stack overflow,
we propose to optimize for stack memory usage by adjusting
the depth of recursions during the transformation.

Loop2Recursion operates on a low-level Intermediate Rep-
resentation (IR) [11], and thereby is generalizable to multiple
programming languages. Being also independent of hardware
and operation systems, Loop2Recursion can also cooperate
with other OS-level or hardware-level wear leveling tech-
niques. We evaluate its wear leveling effectiveness and impact
on performance. Experimental results demonstrate that, com-
pared with no wear leveling and the state-of-the-art dynamic
stack [9], Loop2Recursion reduces the number of writes to the
hottest spot on the stack by 91.6% and 50.1% (on average),
respectively, at negligible performance overhead.

To summarize, the major contributions of this paper include:

¢ An empirical study showing that loops in programs are
apt to cause an unbalanced write distribution;

o Loop2Recursion, a compiler-assisted wear leveling tech-
nique that achieves stack wear leveling by automatically
transforming loops into recursions; and

e an optimization scheme for dealing with the increased
stack memory usage caused by Loop2Recursion.

II. BACKGROUND AND MOTIVATION
A. Background

Stack memory allocation: For the stack segment of a pro-
gram, memory is allocated to stack frames through adjusting
the stack pointer (sp) register. Each stack frame corresponds
to a function instance which has not yet terminated with a
return, holding the return address, incoming parameters, local
variables and saved registers. Every time when a function
is invoked/returned, its frame is allocated/deallocated. The
allocation/deallocation happens on contiguous memory blocks
in a Last-In-First-Out (LIFO) order. Thus, the most recently
allocated frame is always the next to be freed. Due to this
mechanism, a large disparity exists in stack frame distribution
as some memory regions are associated with a relatively large
number of frames while some others are rarely used, which
in turn leads to the uneven writes.

Stack wear leveling: Recently, compiler-assisted tech-
niques are proposed for stack wear leveling. Q. Li et al. [§]
proposed a dynamic stack, where stack frames are allocated
dynamically in a way analogous to heap allocation. Specifi-
cally, every time a function is called, a stack allocator based
on the next-fit policy is immediately employed to obtain a free
memory area for its frame. W. Li et al. [9] further improved
the dynamic stack by employing a new wear-aware memory
allocator, considering that the next-fit allocator is suboptimal
for wear leveling.

Despite the fact that the dynamic stack enables stack
frames to be more uniformly distributed, some limitations
and shortcomings still exist. Firstly, this method regards each
stack frame as a whole without handling the wear inside the
frame. Actually, the inside wear is far from equilibrium, since

frequently-updated variables will produce intensive writes on
their corresponding memory locations. Additionally, the dy-
namic stack incurs significant performance overhead that is
positively correlated to the number of function calls, owing to
the additional allocation and deallocation operations.

B. Motivation

Uneven wear inside stack frames: Excessive writes inside
stack frames commonly arise from loops. Fig. 1 shows a code
snippet selected from the benchmark dijkstra in Mibench [12].
A loop of 100 iterations is contained in main() function. The
local variables ¢ and j are anticipated to be updated for 101
and 201 times, respectively. On a cacheless architecture, each
update may cause a write to memory if the register spills. Even
when write-back caches are used, these writes may not be all
avoided as cache conflicts will frequently occur in the worst-
case scenario. Consequently, the number of writes on memory
locations of ¢ and j is much higher than the others inside the
stack frame. In the real case of a large register file, ¢ and j are
quite likely kept in registers and no register spilling occur. But
there are still many situations hot variables cannot be stored in
registers, such as address taken. Fig. 7 in Section V-B suggests
that most programs suffer from the uneven wear inside stack
frames. Tens of thousands of writes may concentrate on a few
memory locations inside one stack frame.

Impact of loops on stack frame distribution: As men-
tioned in Section II-A, conventional stack frames are allocated
in a LIFO order, due to which function calls inside loops will
cause the callee functions in each iteration to be allocated on
the same memory locations of stack. For example, in the code
snippet shown in Fig. 1, function dijkstra() is called inside
the loop (line 9). For each execution of dijkstra(), its stack
frame is allocated on top of main()’s, as shown in Fig. 3 (a).
As a result, the corresponding memory locations carry out an
enormous number of stack frames, leading to an extremely
unbalanced stack frame distribution.

A motivating example: Based on the discussion above, we
conclude that the loops in a program are one of the primary
causes for uneven wear on the stack. To mitigate this problem,
we can transform the loops into recursive functions.

Let us consider a motivating example. Fig. 2 shows a code
snippet equivalent to the example shown in Fig. 1, which
replaces the loop with a new recursive function main_loop.
The original frequently-updated variables ¢ and j are used
for the parameters of the recursive function, and the loop

1 #define NUM_NODES 100
2 int dijkstra(int chStart, int chEnd);
3 int main(int argc, char *argv[]) {

4 ... // omitted code

5 inti,j;

6 for(i=0,j=NUM_NODES /2;i< 100; i++, j++) {
7 j=j% NUM_NODES;

8 dijkstra(i, j);

9 }

10 ... // omitted code

1}

Fig. 1: A snippet of code in dijkstra from MiBench [12].



1 #define NUM_NODES 100
2 int dijkstra(int chStart, int chEnd);
3 void main_loop(int i, int j) {

4 if (i< 100) {

5 j=j%NUM_NODES;
6 dijkstra(i, j);

7 main_loop(i +1, j + 1);
8 }else

9 return;

10 }
11 int main(int argc, char *argv([]) {

12 ... // omitted code

13 inti=0,j=NUM_NODES/2;
14 main_loop(i, j);

15 ... // omitted code

Fig. 2: Recursive version of the code snippet in Fig. 1.
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Fig. 3: Comparison between stack memory allocations, with the stack
frames on the same column are collocated on the same memory
location. (a) stack allocation for the code snippet in Fig. 1. (b) stack
allocation for the code snippet in Fig. 2.

condition ¢ < 100 is taken as the recursive condition. In
this code snippet, each local variable needs a limited number
of updates, enabling wear leveling inside stack frames. In
addition, each time main_loop() is recursively called, its
stack frame is allocated on the top of stack, as shown in
Fig. 3 (b). Accordingly, the stack frames of dijkstra(), which
were originally collocated, are allocated on different memory
locations, enabling a uniform stack frame distribution. Thus,
the recursion provides better wear leveling than the loop.

III. LOOP2RECURSION

In this section, we detail our proposed wear-leveling
technique—Loop2Recursion, which automatically transforms
loops into equivalent recursions.

A. Overview of Loop2Recursion

Loop2Recursion performs transformations on a low-level,
Static Single Assignment (SSA) [13] based Intermediate Rep-
resentation (IR). Specifically, LLVM [11] IR is used in this
study.

Some higher-level information, such as Control Flow
Graphs (CFGs), can be built from an IR representation of a
program. Fig. 4 shows two IR examples in a CFG represen-
tation, corresponding to the main() function in Fig. 1 and
main_loop() function in Fig. 2, respectively. In a CFG, a
function is a set of basic blocks, where each basic block is
a sequence of instructions. The edges between basic blocks
represent control flow paths. A loop is a sequence of basic
blocks in a function’s graph that constitute a directed cycle.

entry: entry:
br label %for.body Y%cmp = icmp st 32 %i, 100

bril %cmp, label %return, label %if.end
T F

if.end:

Y%rem = srem i32 %j, 100

Ycall = call 132 @dikstra(i32 %, 32 Yorem) #3
Yoadd = add nsw 32 %i, 1

Y%add1 = add nsw i32 %rem, 1

call void @main_loop(i32 %add, i32 %add1)
br label %return

%inc = add nuw nsw 32 %i,

%incl = add nsw i32 %rem, |

Yexitcond = icmp eq 132 %inc, 100

br il %exitcond, label %for.cnd, label %for.body

T I F

@ (b
Fig. 4: LLVM IR examples represented as Control Flow Graphs
(CFGs). (a) IR for main() function in Fig. 1, where the for loop
is by default optimized into do-while format by LLVM. (b) IR for
main_loop() function in Fig. 2.

for.end:
reti32 0

The head block is called a loop header and dominates all
the other blocks in the loop. Some basic blocks with outgoing
edges from loop nodes are called exit basic blocks of the loop.
For example, the CFG shown in Fig. 4 (a) contains a loop,
which consists of a single basic block for.body. The basic block
forbody is the loop header and the block forend is the exit
basic block.

Our IR-based Loop2Recursion exhibits many advantages.
First, the higher-level information in the IR facilitates the
transformation process from loops to recursions. Second, as
an IR is independent of any specific source or target lan-
guage, Loop2Recursion is applicable to various programming
languages. Furthermore, Loop2Recursion only needs to focus
on the transformation for the low-level representation of loops
without being concerned with the loop types (for/while/do-
while) in source programs as well as the control statements
(break/continue/return) inside loops, because all of them have
been mapped to control flow paths in an IR.

Loop2Recursion processes all the loops in an input IR
sequentially. Nested loops are processed separately inside out.
Note that not all loops will induce hot spots on the stack and
need to be transformed. Loop2Recursion will first analyze the
loop being processed and decide whether or not to transform
this loop. Then the transformation is performed only if needed.
The transformation process can be further divided into three
steps: (1) the preparation for the transformation, (2) generating
the recursive function, and (3) substituting the recursion for
the loop. Lastly, Loop2Recursion may still fail to eliminate
some hot data when a loop includes some pointer operations.
Special handling will be provided in such a case.

Below we describe each of these steps in detail.

B. Loop Analysis

To minimize the performance and memory overhead, we do
not transform loops that will certainly not lead to uneven wear
on the stack. Such loops meet the following two requirements
related to the causes of the uneven stack frame distribution
and the hot data as stated in Section II-B: (1) No function call
is contained, and (2) No variable write is involved or all the
writes take place in registers.

A loop analysis is performed to check these requirements.
The first requirement can be checked easily by iterating all



the instructions in the loop. But for the second requirement,
some lower-level information of the loop is needed, as an IR
assumes an infinite set of pseudo-registers and cannot suggest
which variable writes will finally occur in actual registers.
Therefore, we perform a two-stage compilation here. The first
stage completes the register allocation, which assigns variables
to actual registers and manages data transfer between registers
and memory, so that we can detect if any memory write exists
inside each loop. The second stage then performs IR-level
transformations for loops that fail to meet the requirements.

C. Preparation for transformation

This step includes fetching parameters and catching return
values for the recursive function to be generated.

Fetching parameters: A loop generally uses some local
variables defined outside its scope, such as ¢ and j in the code
snippet in Fig. 1. To make these variables accessible inside
the recursive function, we choose to pass them as arguments
to the recursive function.

In SSA form, we divide parameters into two classes: variant
parameters and invariant parameters. The former are updated
in each iteration while the latter remain unchanged for the
whole loop. The two kinds of parameters are fetched in
different ways.

To fetch the variant parameters, we only need to find the
¢ (phi) nodes in loop header, such as % and %7 in block
for.body in Fig. 4 (a). They correspond to the variables that
have an initialized value (0 for % and 50 for %j) in the first
iteration and are updated with a new value (%inc for %i and
%incl for %y) in subsequent iterations. After transforming a
loop into a recursive function, the initialized values need to be
passed as arguments when first calling the recursive function
in the loop’s parent function (e.g. main() function for the loop
in Fig. 4 (a)), and the new values are used as arguments in
the following recursive calls.

To fetch the invariant parameters, we iterate through the
instructions in the loop and check all their operands. Those
operands whose definitions are outside the loop belong to the
invariant parameters, and need to be passed to the recursive
function via the call from the loop’s parent function. As for
the recursive call inside the recursive function, the incoming
invariant parameters are passed on.

Catching return values: In SSA form, some variables
defined inside the loop may be used outside. For example,
%inc and %incl in Fig. 4 (a) represent the modified ¢ and
7 after each loop iteration, and they will be used outside if
the counterparts ¢ and j are used after the loop in the source
code. After transforming the loop into a recursive function,
these variables will be inaccessible outside and thus need to
be returned.

To catch return values, we iterate through all the instruc-
tions inside the loop. For each instruction corresponding to
a variable definition, we obtain this variable’s uses from the
Definition-Use Chain built from the IR. The variable will be
returned if it has one or more uses outside the loop.

In addition, a loop may have multiple exit basic blocks,
which can happen when the loop contains return statements
or goto statements. In this circumstance, we assign a unique
ID to each exit block, and return an additional integer value
(an exit block indicator) to indicate which exit block is going
to be branched into when the generated recursive function
terminates.

D. Generating recursive function

Since we have identified the parameters and return values,
we can create a recursive function with the corresponding
parameters’ types and return type. For multiple return values,
a structure type is used as a wrapper.

To ensure its equivalence to the original loop, the recursive
function should preserve all the basic blocks in the loop and
maintain the consistency of control flow. It should recursively
call itself or return when the control flow originally branches
back to the loop header or exits the loop. For example, Fig. 5
shows the CFG of a recursive function equivalent to the loop
shown in Fig. 4 (a).

The following steps detail the process of generating the
recursive function:

o Firstly, move all the basic blocks from the loop into
this function (The loop header must be the entry block
of the recursive function). Remove the ¢ nodes in the
loop header and replace the uses of the variables defined
outside the loop with the function’s parameters.

o Create a basic block named recur, in which a recursive
call to the function itself is contained. Proper arguments
are passed to the call according to the parameters type as
described in the previous subsection, and a value named
retl is returned from this call.

o Create a basic block named pre.ret, in which a return
value ret2 is set up. If multiple values need to be
returned, ret2 will be of a structure type, and each
element in ret2 will be assigned separately. If there are
multiple exit blocks, a ¢ node is used to select an exit
block ID for an exit block indicator.

o Create a basic block named return, and insert a branch
instruction that branches to the return block at the end
of recur and pre.ret blocks. A ¢ node is used in the
return block to select a value from retl and ret2 as the
final return value.

forbody:

Yerem = srem i32 %j, 100

Yocall = tail call i32 @dijkstra(i32 %i. i32 %erem)
%inc = add nuw nsw i32 %i, 1

%incl = add nsw i32 %rem, 1

%eexitcond = icmp eq i32 %inc, 100

br il %exitcond, label %pre.ret, label %recur

( T F X
pre.ret: recur:
Yoret2 = %ostruct.ret {i32 %inc, i32 %incl} %eret] = call %struct.ret @main_recur(i32 %inc, i32 %incl)

br label %return br label %return
return:

Yoret = phi %struct.ret [ %retl, %erecur ], [ %ret2, %pre.ret |
ret Jostruct.ret Joret

Fig. 5: CFG for the recursive function main_recur(i32 %i,132 %j)
which is equivalent to the loop in Fig. 4 (a). In this example, we
suppose that %inc and %incl need to be returned.



o Update the terminator instructions of the basic blocks in
the recursive function. Replace the branch target with
recur or pre.ret if it originally branches to the loop
header or an exit block.

E. Substituting the recursion for the loop.

To substitute the loop by recursion, we first find the pre-
decessor block of the loop header, then replace the branch
to the loop header in it with a call to the recursive function.
The return values of the recursion will replace the uses of
the variables defined inside the original loop. Lastly, if the
original loop only has one single exit block, we insert a branch
instruction that branches to this exit block at the end of the
predecessor block. Otherwise, we need to branch to a specific
exit block according to the returned exit block indicator.

F. Handlings for cases with pointers

At this point, we have successfully transformed a loop into
a recursive function. However, the hot data issue may still
remain if a loop iteratively dereferences a pointer and stores
values to the pointee. For this simple C fragment:

int xp = &i;

while (cond) { (xp)++; }

a pointer p is allocated and set to point to the variable ¢. Each
time through the while loop, p is dereferenced and its pointee,
7, 1s incremented. As a result, the number of writes on 7’s
memory location equals to the number of iterations, causing %
to become hot.

The aforementioned Loop2Recursion will transform this
while loop into a recursive function that semantically like this:

void while_recur (int *p) {

if (cond) {
(xp) ++;
while_recur (p);
} else
return;
}
the pointer p is fetched as an invariant parameter. All the store
operations still perform on 7’s memory location, resulting in a
failure for eliminating the hot data.

To mitigate this problem, we propose to copy the pointer’s
pointee before the recursive call in the recursive function, and
then use the reference to the copied variable as the argument
in the recursive call instead of the current pointer. When the
call returns, we copy the value back to ensure the pointee’s
final value to be identical to the correct one.

int copy = *p;
while_recur (&copy) ;
*p = COpY;

Aliasing issue: When dealing with pointers, we should also
consider the pointer aliasing thoroughly, as copying a pointee
referred by multiple pointers is error-prone. We employ a flow-
sensitive pointer analysis in this study to analyse the aliasing
relations of pointers and handle different aliasing conditions
carefully. Below, we discuss our copy scheme in detail.

First, for each pointer fetched as a parameter of the trans-
formed recursive function, we determine whether its pointee

needs to be copied. Based on the conservative but safe philos-
ophy, we do not execute the copy operation in the following
cases. (1) The pointer is updated with each iteration, which
indicates that it would barely store values to the same object;
(2) There is no store to the pointer’s pointee in the loop, so that
the pointee is constant without introducing any write; (3) The
pointee’s type is uncertain, as the points-to set of the pointer
may include both scalars and arrays; (4) The pointer may alias
non-local variables, including global variables, heap objects or
variables defined in other functions.

Next, we perform the copy operations for the candidate
pointers under different conditions of pointer aliasing.

No-alias condition: If a pointer is not aliased, its pointee
can be directly copied like the example above.

Must-alias condition: If two or more pointers must alias
with each other, they will refer to the same pointee. We only
need to copy this pointee once and replace these pointers with
the reference to the copied value in the recursive call. The
copy back operation only needs to be performed once as well.

May-alias condition: If two pointers have a may-alias
relation, we need to add a dynamic alias check at run-time.
Let us consider the code below as an example:

int *p = &i, *q = &3J;
if (condl) { g = p; }
while (cond2) { (xp)++; (*q)++; }

p and ¢ alias only when condl holds, which cannot be
conclusively determined at compile time. As different aliasing
relations will induce different copy operations, we add a
dynamic alias check in the transformed recursive function:

if (p == q) {
int copy_p = *p;

while_recur (&copy_p, &copy_p);
*p = Copy_p;
} else {

int copy_p = *p, copy_g = *q;
while_recur (&copy_p, &copy_d);

*p = Copy_p, *q = CcoOpy_d;
}

This dynamic check works well for the circumstance where
only two pointers may alias. However, when there are more
pointers that may alias with each other, the number of required
dynamic check conditions increases exponentially, resulting
in a significant increase in code size and a performance
degradation. Therefore, we only process the two pointers’ case
in this paper, leaving code with more pointers may aliasing
unoptimized but still correct. Our evaluation shows that this
suffices for eliminating most hot data.

IV. REDUCING STACK MEMORY USAGE FOR
LOOP2RECURSION

Although recursions exhibit better wear leveling than loops,
they may substantially increase the stack memory consump-
tion. Without any control, excessively deep recursions may
exhaust all the available stack memory and raise a stack
overflow error. To reduce the stack memory usage, we propose
to employ a compiler option to limit the depth of recursions,
so programmers can flexibly exploit a good trade-off between
wear leveling and stack expansion, as depicted in Section V-F.



1 #define DEPTH_LIMIT 20

2 struct RetType {inti; intj; };

3 struct RetType main_loop(int i, int j, int depth) {
4 if (i< 100 && depth < DEPTH_LIMIT) {

5 j=]j % NUM_NODES;

6 dijkstra(i, j);

7 return main_loop(i + 1, j + 1, depth + 1);
8 Yelse{

9 struct RetTyperet={i,j};

10 return ret;

11 }

12}

13 int main(int argc, char *argv[]) {

14 ... // omitted code

15 inti, j;

16 for (i=0,j=NUM_NODES/2;i<100;) {
17 struct RetType ret = main_loop(i, j, 0);
18 i=ret.i;j=retj;

20 ... // omitted code
21}

Fig. 6: A code snippet equivalent to the example shown in Fig. 1.
The recursion depth is limited to 20 in this example.

To limit the depth of recursions, we stop recursing after
a certain number of recursive calls, and make the recursive
function iteratively invoked so that the total number of times
executing the body of the recursive function is identical to that
of the original loop iterations.

We now illustrate this scheme by continuing with the loop
example shown in Fig. 1. The depth-limited recursive function
transformed from this loop will be like main_loop() shown in
Fig. 6. In this recursion, an extra parameter depth is added,
representing the depth of the recursive call at runtime. This
parameter is initialized with 0 when the recursive function is
first called (line 17) and incremented by 1 when passed to the
recursive call within this function (line 7). A depth-limiting
condition is added to the current recursive condition (line
4). The if-body gets executed only when both the conditions
hold. Therefore, the maximum depth of this recursion can be
guaranteed to be under a predetermined threshold value (20 in
this example). In the loop’s parent function main(), the loop
body is replaced with an invocation of the recursive function
(lines 17 and 18). The for loop’s update statements are also
deleted as they are essentially a part of the loop body and will
be executed in the recursion.

V. EXPERIMENT
A. Experimental Setup

We implement Loop2Recursion as an LLVM function pass
based on LLVM 3.8.0. To evaluate the effectiveness, we com-
pare Loop2Recursion with a baseline without wear leveling
management (no WL) and the state-of-the-art dynamic stack
[8], [9], in terms of wear leveling, performance and stack
memory usage. For dynamic stack, the wear-aware memory
allocator UWLalloc [9] is employed which limits the number
of stack frames allocated on each same memory address.
The allocation limit is set to 300 in this experiment. For
Loop2Recursion, we limit the maximum depth of recursions
to 20 to reduce stack memory usage.

Programs from Mibench [12] are selected for evaluation and
compiled at the optimization level ‘02’ for each evaluated

method. In particular, we disable tail-call optimization when
applying Loop2Recursion to prevent the generated recursive
functions being transformed back to loops.

We develop a Pin-based [14] tool to trace the writes on
the stack for evaluation. Both cacheless and cache-enabled
architectures are evaluated. For the cache-enabled architecture,
we implement a Pin-based cache simulator, simulating a 4KB,
64-way associative data cache which references the parameters
of ARM940T [15]. All the evaluations are conducted on linux
(kernel version 5.3.0) with an Intel Core i15-4278U 2.60 GHz
CPU and 8 GB of DRAM memory (as a proxy of NVM).

B. Wear Leveling on Cacheless Architecture

As stated in Section II, loops in programs generally lead
to the uneven wear inside stack frames and non-uniform stack
frame distribution on the stack. We first investigate the effect of
Loop2Recursion in solving the two issues respectively. Then
we evaluate the overall wear leveling effectiveness. In this
case, a cacheless architecture is assumed.

Wear inside stack frames: We compare the maximum
number of writes on one address inside stack frames among
the baseline, dynamic stack and Loop2Recursion, as shown in
Fig. 7. Since the dynamic stack focuses on wear-aware mem-
ory allocation for stack frames only, the wear inside each stack
frame is the same as that without wear leveling management.
In most cases, Loop2Recursion drastically decreases the wear
inside stack frames by tens to hundreds times.

The benchmark worth noticing here is bitcount, in
which the result increases from 16 to 3751 after applying
Loop2Recursion. This is caused by the return values of the
generated recursive functions. When limiting the recursion
depth, the recursive function will be iteratively invoked, and
the return values for each iteration of recursive invocation
are allocated on the same memory address inside the caller’s
stack frame. But this increase will not impair the final wear
leveling performance, since this increased number is never
larger than the loop bound divided by the depth limitation.
Without transforming loops into recursions, a function call
inside a loop will incur a much more severe hot spot where
the number of writes equals or exceeds the loop bound.

Stack frame distribution: Fig. 8 compares the maximum
number of stack frames allocated on one memory address.
The dynamic stack achieves a more uniform stack frame
distribution, as it strictly limits the allocation count on each
memory location (300 in this experiment). Compared to the
baseline, Loop2Recursion reduces the maximum stack frame
count considerably, especially for blow fish, in which the
count drops about 99.5%.
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Fig. 9: Number of writes on the hottest memory address on the stack.

However, adpcm is noteworthy. The generated recursive
functions account for this exception. When a loop is trans-
formed to an depth-limited recursion, the recursive function is
iteratively called and each iteration will start from the same
address. When this loop contains hot data without function
calls, the stack frame count on the address will increase.
However, the increased number is definitely less than the the
number of writes caused by the hot data, so it will not impact
the final wear leveling performance.

Wear leveling effectiveness: Due to the fact that NVM’s
lifetime is determined by the worst wear degree, we eval-
uate the overall wear leveling effectiveness by comparing
the number of writes on the most-written memory address
among the entire stack area as shown in Fig. 9. Both the
dynamic stack and Loop2Recursion significantly decrease the
write count compared to the baseline. For most benchmarks,
Loop2Recursion achieves a similar or a better result than the
dynamic stack. On average, Loop2Recursion reduces 91.6%
and 50.1% of the maximum write count compared to the base-
line and dynamic stack, theoretically improving the achievable
lifetime of NVM by 11.4x and 1.9x, respectively. As a result,
Loop2Recursion exhibits higher wear leveling effectiveness.

C. Wear Leveling on Cache-enabled Architecture

When a write-back cache is used, a memory write only
happens when a modified cache line is written back to the
memory. To evaluate the wear leveling performance, we com-
pare the number of writebacks to the hottest memory address
between the baseline and Loop2Recursion.

As shown in Fig. 10, some benchmarks (bitcount, susan,
and adpcm) exhibit extremely high locality, so there are
only a few writebacks to the hottest address. After applying
Loop2Recursion, the program’s locality declines, resulting in
the increase of writeback count. But the increase has only a
negligible impact since the writeback count is fairly small.

For other benchmarks, the number of writebacks is compar-
atively higher. Especially in patricia, there are more than ten
thousand of writes to one memory address. We can see that
Loop2Recursion is still effective to improve the wear leveling
for most of these benchmarks. On average, the maximum
writeback count is reduced nearly by half.
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We further compare cache hit ratio between the base-
line and Loop2Recursion, as shown in Fig. 11. For most
benchmarks, the cache hit ratio drops slightly after applying
Loop2Recursion, thus Loop2Recursion has a negligible impact
on the cache performance. In conclusion, Loop2Recursion can
also work well for a cache-enabled architecture, as it reduce
the maximum write count by half while only incurring about
1% reduction in rate of cache hits on average.

D. Performance Overhead

To evaluate the performance, we evaluated the total number
of instructions and write instructions executed. Fig. 12 and 13
show the normalized instruction count and write instruction
count, respectively, in which the last column gives the geo-
metric means of these normalized values. Clearly, the dynamic
stack incurs significant performance overhead, as about twenty
to forty times more instructions are executed in some bench-
marks. This overhead comes from the additional allocation
and deallocation operations for dynamically allocating stack
frames, and therefore is positively correlated to the number of
function calls.

Compared to the dynamic stack, Loop2Recursion has sub-
stantially lower performance overhead, which arises from the
invocation of recursive functions and the copy operations for
pointees. When there are some variables of a large storage
size to be copied, the overhead can be much higher. This is
why the number of instructions increases greatly in blow fish.
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This overhead can be alleviated by reducing the copy times
for large-size pointees at the expense of wear leveling perfor-
mance. Nevertheless, Loop2Recursion increases the instruc-
tion count and write instruction count by less than 5% and
10% for most benchmarks, which is negligible compared to
the dynamic stack.

E. Stack Memory Overhead

In this subsection, we evaluate the stack memory footprint
for the benchmarks under different schemes. The evaluation
result is shown in Fig. 14. The dynamic stack significantly
increases the stack memory usage, with an increase factor
exceeding 100 for several benchmarks. The memory overhead
of the dynamic stack can be lowered down by setting a larger
allocation limit for UWLalloc, which however, may decrease
the wear leveling performance. By contrast, the stack memory
overhead caused by Loop2Recursion is much lower. On av-
erage, the stack memory consumption of Loop2Recursion is
about 1.47 times as that of the baseline, which is somehow
tolerable considering that the PCM memory provides much
higher storage density.

FE. Sensitivity Analysis to depth limitation

Lastly, we conduct a set of experiments to evaluate the
sensitivity of our approach to the recursion depth limitation.

Fig. 15 compares the write count on the most-written
address on a cacheless architecture under four different depth
limitation configurations. The result suggests that the maxi-
mum write count decreases with the increasing depth limita-
tion value. Therefore, Loop2Recursion can achieve better wear
leveling when select a larger recursion depth limitation.

Fig. 16 compares the stack memory footprint under differ-
ent depth limitation configurations. The stack memory usage
increases generally with the increasing depth limitation value.
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Also the stack memory consumption can be substantially high
when the recursion depth is unlimited, which reflects that lim-
iting the recursion depth effectively reduces the stack memory
usage. What’s more, by combining the results shown in Fig. 15
and Fig. 16, we can conclude that Loop2Recursion provides
a flexible tradeoff between the wear leveling performance and
stack memory usage.

VI. CONCLUSION

This paper presents Loop2Recursion, a compiler-assisted
wear leveling technique for NVM. Loop2Recursion automat-
ically transforms loops to recursive functions, eliminating the
hot data inside stack frames and uniformly distributing stack
frames among the stack area. In addition, this approach also
enables a flexible tradeoff between wear leveling effectiveness
and stack memory usage by limiting the depth of recursions.
Experimental results indicate that Loop2Recursion can signif-
icantly reduce the maximum writes on the stack and improve
the lifetime of NVM with negligible performance overhead.
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